
Exception Handling in Python (Class XI–XII)

1. What is an Exception?

An exception is a runtime error that interrupts the normal flow of a program.

2. Why Exception Handling is Needed

• Prevents abrupt program termination
• Handles invalid user input
• Improves program reliability
• Helps in debugging and error analysis

3. Types of Errors

• Syntax Error – detected before execution
• Runtime Error (Exception) – occurs during execution
• Logical Error – program runs but produces incorrect output

4. Common Built■in Exceptions

ZeroDivisionError, ValueError, TypeError, IndexError, KeyError, NameError, FileNotFoundError

5. try–except Block

Used to catch and handle exceptions gracefully.

Example: try–except
try:

 x = int(input("Enter number: "))

 print(10/x)

except ZeroDivisionError:

 print("Division by zero not allowed")

except ValueError:

 print("Invalid input")

6. else Block
The else block executes only if no exception occurs.
try:

 a = int(input())

 b = int(input())

 print(a/b)

except ZeroDivisionError:

 print("Error")

else:

 print("Successful execution")

7. finally Block
The finally block executes whether an exception occurs or not.
try:

 f = open("data.txt")

except FileNotFoundError:

 print("File not found")

finally:

 print("End of program")

8. raise Keyword
Used to raise an exception explicitly.
age = int(input("Enter age: "))

if age < 18:

 raise ValueError("Age must be 18 or above")

9. User■Defined Exception
class MyError(Exception):

 pass

try:

 raise MyError("Custom error occurred")

except MyError as e:

 print(e)

CBSE Exam Tips
• Always use specific exceptions
• try block must be followed by except or finally
• finally block always executes
• Exception handling improves program robustness

