Exception Handling in Python (Class XI-XII)

1. What is an Exception?

An exception is a runtime error that interrupts the normal flow of a program.

2. Why Exception Handling is Needed

* Prevents abrupt program termination
» Handles invalid user input

* Improves program reliability

* Helps in debugging and error analysis

3. Types of Errors

 Syntax Error — detected before execution
* Runtime Error (Exception) — occurs during execution
* Logical Error — program runs but produces incorrect output

4. Common Builtmin Exceptions

ZeroDivisionError, ValueError, TypeError, IndexError, KeyError, NameError, FileNotFoundError

5. try—except Block

Used to catch and handle exceptions gracefully.

Example: try—except

try:
X = int(input("Enter number: "))
print (10/x)
except ZeroDivi sionError:
print("Division by zero not allowed")
except Val ueError:
print("lInvalid input")

6. else Block

The else block executes only if no exception occurs.
try:
a int(input())
b int(input())
print(alb)
except ZeroDivi sionError:
print("Error")
el se:



print("Successful execution")

7. finally Block

The finally block executes whether an exception occurs or not.
try:
f = open("data.txt")
except Fil eNot FoundError:
print("File not found")
finally:
print("End of progrant)

8. raise Keyword

Used to raise an exception explicitly.
age = int(input("Enter age: "))
if age < 18:
rai se Val ueError("Age nust be 18 or above")

9. Userm Defined Exception

cl ass MyError (Exception):
pass

try:

rai se MyError("Customerror occurred")
except MyError as e:

print(e)

CBSE Exam Tips

* Always use specific exceptions

« try block must be followed by except or finally

« finally block always executes

» Exception handling improves program robustness



