
STRING MANIPULATION

Strings are characters enclosed in quotes of any type—

single quotation marks(‘ ‘),double quotation marks(“ “)

and triple quotation marks(‘’’ ‘’’ “”” “””)

OR

String is a sequence of characters,which is enclosed

between either single (' ') or double quotes (" "), python

treats both single and double quotes same.

Triple Quotes- basically used in function to show

the description related to the function
It is used to create string with multiple lines.

e.g.

Str1 = “””This course will introduce the learner to text mining and

text manipulation basics.

The course begins with an understanding of how text is handled by

python”””

Features of String Data Type:

1. It is used to store text type of data.

2. Strings are immutable(no change of value in place)

3. Empty string has zero characters.

4. In string each character has a unique position id/index.

Syntax to declare empty string:

variable _name= quotation marks

example:

str=‘ ‘

OR

str=“ “

String items can be accessed using its index position.
e.g.
s =“who”
print(“positive indexing”)
• print(s[0]) #w
• print(s[1]) #h
• print(s[2]) #o
print('Negative indexing')
• print(s[-1]) #o
• print(s[-2]) #h
• print(s[-3]) #w

Access values from a string

To extract limited information from a string .

Or

To access a range of characters in a string

syntax : string_name[: :]

string_name[start:stop :step]

Slicing in String

Iterating/Traversing through string
Each character of the string can be accessed sequentially using

for loop.

e.g

.
OUTPUTstr='Computer Sciene‘

for i in str:

print(i)

str='Computer Sciene‘

for i in range(len(str)):

print(str[i])

OR

C
o
m
p
u
t
e
r

S
c
i
e
n
c
e

Write a code to display the character and its

position

e.g

.
OUTPUTstr=‘COMPUTER SCIENCE‘

for i in range(len(str)):

print(i , str[i])

0 C
1 O
2 M
3 P
4 U
5 T
6 E
7 R
8
9 S
10 C
11 I
12 E
13 N
14 C
15 E

String comparison
We can use (> , ==,< , <= , <=, !=) to compare two strings.

print(" Reena " == " Reeta ")

print(" Reena " != " Reeta ")

print(" Reena " > " Reeta ")

print(" Reena " >= " Reeta ")

print(" Reena " < " Reeta ")

print(" Reena " <= " Reeta ")

print(" Reena " > "")

String compares lexicographically it means

using ASCII value of the characters.

Suppose you have str1 as "Reena" and str2 as "Reeta" .

The first two characters from str1 and str2 (R and R) are compared.

As they are equal,

the second and third characters are compared.

they are also equal,

the fourth two characters (n and t) are compared. And because 't' has

greater ASCII value than ‘n' , str2 is greater than str1 .

ord() is used to find the ordinal
Unicode (ASCII) value.
syntax
ord(‘single character’)
e.g.
ord(‘A’)

Updating Strings- String are immutable but
String value can be updated by reassigning another value in

it.(by using concatenation operator (+))

e.g.

a = 'Hello World'

a = a[:7] + ' with file'

print ("updated string :- ",a)

OUTPUT

('updated string :- ', Hello with file')

String Special Basic Operators
e.g.

a=“comp”

b=“sc”

Operator Description Example

+ Concatenation – to add two strings a + b = compsc

* Replicate same string multiple times (Replication) a*2 = compcomp

[] Character of the string (position id/index) a[1] will give o

[:] Slice –Range string a[1:4] will give omp

in Membership operator check p in a will give True

not in
Membership check for non availability M not in a will give

False

% Format the string (placeholder)

print ("my file name is %s and location is %d" % ('story', 10))

String functions and methods

a=“comp”

b=“my comp”
Method Result Example

len() Returns the length of the string r=len(a) will be 4

str.capitalize() To capitalize the string r=a.capitalize() will be “Comp”

str.title() Will return title case string r=b.title() will be “My Comp”

str.upper() Will return string in upper case r=a.upper() will be “COMP”

str.lower() Will return string in lower case r=a.upper() will be “comp”

str.count()
will return the total count of a

given element in a string
r=a.count(‘o’) will be 1

str.find(sub)
To find the substring

position(starts from 0 index)

r=a.find (‘m’) will be 2

str.replace()
Return the string with replaced

sub strings

r=b.replace(‘my’,’your’) will be

‘your comp’

String functions and methods

a=“comp”

Method Result Example

str.index() Returns index position of substring
r=a.index(‘om’)

will be 1

str.isalnum()
String consists of only alphanumeric

characters (no symbols no spaces)

r=a.isalnum() will

return True

str.isalpha()
String consists of only alphabetic

characters (no symbols no spaces)

str.islower() String’s alphabetic characters are all lower

case

str.isnumeric() String consists of only numeric characters

str.isspace() String consists of only whitespace characters

str.istitle() String is in title case

str.isupper() String’s alphabetic characters are all upper

case

String functions and methods
Method Result Example

str.lstrip(char)

str.rstrip(char)

Returns a copy of the string with leading/trailing

characters removed

b=‘ comp’;

r=b.lstrip() will be ‘comp’

str.strip(char) Removes specific character from leading and trailing

position

b=‘ comp ’;

b.strip() …output will be ‘comp’

More examples related to strip function

String functions and methods
Method Result Example

str.split() Returns list of strings as splitted

b=‘my comp’; r=b.split() will be

[‘my’,‘comp’]

str.partition() Partition the string on first occurrence of substring

b=‘my comp’;

r=b.partition(‘comp’)

Output will be [‘my’,‘comp’]

More examples

More examples

String functions and methods
Method Result Example

endswith(s1: str):

bool

Returns True if strings ends with substring s1

startswith(s1: str):

bool

Returns True if strings starts with substring s1

count(substring):

int

Returns number of occurrences of substring the string

find(s1): int Returns index from where s1 starts in the string, if string

not found returns -1

index: int Returns highest index from where s1 starts in the string, if

string not found returns value error
Stringname.index(char)

e.g.

Searching for Substrings

E.g. program

s = "welcome to python"

print(s.endswith("thon"))

print(s.startswith("good"))

print(s.find("come"))

print(s.find("become"))

print(s.rfind("o"))

print(s.count("o"))

OUTPUT

True

False

3

-1

15

3

Program to calculate the number of digits

string=input("Enter string:")

c=0

for i in string:

if(i.isdigit()): # or if i>=‘0’ and i<=‘9’:

c=c+1

print("The number of digits is:", c)

Format

Symbol

%s -string conversion via str() prior to formatting

%i -signed decimal integer

%d -signed decimal integer

%u -unsigned decimal integer

%o -octal integer

%x -hexadecimal integer (lowercase letters)

%X -hexadecimal integer (UPPERcase letters)
%e -exponential notation (with lowercase 'e')

%E -exponential notation (with UPPERcase 'E')

%f -floating point real number

%c -character

%G -the shorter of %f and %E

