Theory notes

Q What is Python?

Ans Python is a programming language with objects, modules, threads,
exceptions and automatic memory management.

Q What are the benefits of using Python?
The benefits of pythons are

e it is simple and easy,

e portable, extensible,

e Dbuild-in data structure and

e it is an open source.

Q How Python is interpreted?

Ans

Python language is an interpreted language. Python program runs directly from
the source code.

It converts the source code that is written by the programmer into an
intermediate language, which is again translated into machine language that
has to be executed.

Q Is python a case sensitive language?

Ans Yes, python is a case sensitive language, it means python considers
lowercase and uppercase differently.

Like if we have written

Num=3

num=24

python will consider both the variables differently though their
pronunciation is same.

Q What are Character Sets in Python?

Ans Character sets are the combination of numbers, alphabets and special
symbols. These are set of valid characters recognized by python
character sets are:

1. letters- A-Z,a-z

2. digits- 0-9

3. special symbols- &,%,,$,@,#%,;,{,[,),2,/,:,",",>,<,+,!," etc
4. whitespaces- tab,blank space(white space),escape

sequences (newline,alert, formfeed,vertical tab,carriage return)etc.

Q What is indentation in Python?
Ans
e Indentation refers to the spaces applied at the beginning of a code
line.
* In Python, it is very important.
* Python uses indentation to indicate a block of code or used in block of

codes.

e.g.

if 3 > 2:

print (“"Three is greater than two!") #syntax error due to not indented

Q What are Tokens?
Ans
Smallest piece of code.
OR
Smallest individual unit in a program

Q What are the different types of Tokens?
Ans

1. Keyword(system defined names)

2. Identifier (user defined names)

3. Literals

4. Operators
5. Punctuators

Q Explain Keyword
Ans Keywords are the reserve words/pre-defined words/special words of python
which have a special meaning for the interpreter.

e.g

False True None def if
lambda class yield continue else
assert or while break elif
del from is not pass
For global finally import as

in nonlocal return with and
int except raise print csv
pickle reader writer dump load
sys connector cursor execute fetch

Q What are identifiers?

Ans

Identifiers are the name given to the different programming elements like
variables, functions, lists, dictionaries etc.

Q What are the naming rules of Identifiers?

Ans

Spaces are not allowed

Special symbols like $%7&#@! Not allowed

Must made up of only letters,numbers and underscore()
Can’t begin with a number

Keywords are not allowed

Can start with underscore()

ok WNER

e.qg.
some valid identifiers are:

myfile, admno, nol, roll no, d 3 21, For
some invalid identifiers are:

roll-no (special character hyphen(-))
3 d 21 (start with a digit)

for (keyword)
admno. (contains special character . (dot))
no.l (contains special character . (dot))

Q Explain the different types of Literals in Detail.

Ans

1. Numeric Literals- are numeric values like integer floating point number
or a complex number

(a) Integer literals- whole numbers. These can be in the form of
e decimal (0-9 e.g. 2345, -2345)
e octal (begin with Oo e.g.0021)
e Hexadecimal (begin with Ox. e.g OxBD)

(b) Floating literal - integer with decimal (e.g.-13.0,3.5)

(c) Complex (e.g. 2+37 here 2 and 3 are real and j are imaginary

2. String literal- is a sequence of characters surrounded by Quotes
(Single, Double or Triple Quotes).
String literal can be
(a) single line strings- must terminate in one line
e.g. ="hello world”
(b) multi line strings- spread across multiple lines
e.g. t= “hello\
world”
tl='’"hello world’’’ or “””hello world”””
3. Special literal -none (empty legal value)- is to indicate absence of
value
4. Boolean literal- to represent one of the two Boolean Values i.e. True

or False

Q What are operators?

Ans

Operators are the symbols or words that perform some kind of operation
on given values (operands) in an expression and returns the result.

Types of operators are:

arithmetic +,=0 %% ,x%,)/
bitwise &, ~, |
Identity is, is not
(these are used to compare the memory locations of two objects).
These can be used in place of == (is) and '= (is not)
Relational >,L,>=,<=,==,1=
(comparison) (these operators are used to compare the values)
logical and, or, not
(these are used to perform logical operations on the given two
variables or values.)
shift <<, >>
Assignment =
(these are used to assign values)
Membership in, not in
(these operators used to validate whether a value is found within a
sequence such as such as strings, lists, or tuples.)
arithmetic- t=, -=, [/=, F*=, *=, /=
assignment
Q Define Python Operator Precedence
Ans
PEMDAS
Parentheses |Exponentiation|Multiplication|Division|Addition|Subtraction
Operators Meaning
() Parentheses
* % Exponent
* [/, //, % Multiplication, Division, Floor, Division,
Modulus
+,- Addition, Subtraction
=,1=,>,>=,<,<=, is, is not, in, not in Relational, Identity,Membership Operators
Not Logical NOT
And Logical AND
Or Logical OR

Q What are Punctuators?

Ans

Punctuators are the symbols that are used in programming language to organize
sentence structure, indicate the rhythm and emphasis of expressions,
statements and Program Structure.

Common Punctuators are:

(VLY LI #/ 8

Question 1:

What is the difference between a keyword and an identifier ?

Answer:

Keyword is a special word that has a special meaning and purpose. Keywords are reserved and are few.
For example : if, else, elif etc.

Identifier is the user-defined name given to a part of a program like variable, object, functions etc.
Identifiers are not reserverd. These are defined by the user but they can have letters, digits and a
symbols underscore. They must begin with either a letter or underscore. For example : chess, _ch, etc.
Question 2:

What are literals in Python ? How many types of literals are allowed in Python ?

Answer:

Literals mean constants i.e. the data items that never change value during a program run. Python allow
five types of literals :

String literals

Numeric literals

Boolean literals

Special literal (None)

Literal collections like tuples, lists etc.

Question 3:

How many ways are there in Python to represent an integer literal ?

Answer:

Python allows three types of integer literals :

Decimal (base 10) integer literals.

Octal (base 8) integer literals.

Hexadecimal (base 16) integer literals.

For example, decimal 12 will be written as 14 as octal integer and as OXC as hexa decimal integer.
(12)10 = (14)s = (OXC)16. (as hexa decimal)

Question 4:

How many types of strings are supported in Python ?

Answer:

Python allows two string types :

Single line strings : Strings that are terminated in single line. For example :

str = ‘Oswal Books'

Multiple strings : Strings storing multiple lines of text. For example :

str=‘Owal \

Books’

orstr="""0swal

Books

Question 5:

What is “None” literal in Python ?

Answer:

Python has one special literal called ‘None’. The ‘None’ literal is used to indicate something that has not
yet been created. It is also used to indicate the end of lists in Python.

Question 6:

What factors guide the choice of identifiers in Programs ?

Answer:

An identifier must start with a letter or underscore followed by any number of digits or/ and letters.

No special character (other than under-score) should be included in the identifier.

No reserved word or standard identifier should be used.

Upper and lower case letters are different. All characters are significant.

Question 7:

What will be the size of the following constants : “\a”. “\a”, “Manoj\’s”, ‘\”, “XY\ YZ”
Answer:

‘\a’ —size is 1 as there is one character and it is a string literal enclosed in single quotes.
“\a” —size is 1 as there is one character enclosed in double quotes.

“Manoj\’s” —size is 7 because it is a string having 7 characters enclosed in double quotes.
“\” —size is 1. It is a character constant and is containing just one character \”.

“XY\ —size is 4. It is a multiline string create YZ” with \ in the basic string.

Question 8:

What is used to represent Strings in Python ?

Answer:

Using Single Quotes (‘)

You can specify strings using single quotes such as ‘Quote me on this’. All white space i.e. spaces and
tabs are preserved as it is.

Using Double Quotes ()

Strings in double quotes work exactly the same way as strings in single quotes. An example is “What's
your name?”

Using Triple Quotes o(”’ or ” ”)

You can specify multi-line strings using triple

guotes. You can use single quotes and double

quotes freely within the triple quotes. An example

is

“‘This is a multi-line string. This is the first line. This is the second line.

“What’s your name?,” | asked.

He said “syed saif naqvi.”

Question 9:

Which of the following variable names are invalid ? Justify.

(a) try

(b) 123 Hello

(c) sum

(d) abc@123

Answer:

(a) try : is a keyword can’t be used as an identifier.

(b) 123 Hello : Variable names can’t start with a digit.

(c) abc@123 : Special characters aren’t allowed in variable names.

DATA TYPES

Q What do you mean the term Data types in Python?

Ans

Data types are used to identify the type of data and set of valid operations
which can be performed on it.

Q How many types of data types in Python?

Ans
1. Numbers(integer (whole no), floating(number with decimal)
2. String
3. List
4. Tuple
5

. Dictionary

Data Types

| 1
_ L None U Sequences L Mapping
| 1 1 | : 1 I
Floating : : et
L Point L Complex L String L Tuple List L Dictionary

L. Integer

Q Which function is used to find the data type of an wvariable
Ans type() function is used to find the data type of any variable,object or

function.

e.g.
>>>x=10
>>>type (x)
<class ‘int’>

>>>y=12.3
>>>type (y)

<class ‘float’>

>>>type (12.45)

<class ‘float’>

Q Explain the concepts of different python data types in detail.

Ans

1. Number data type- used to store numeric values.
a. Integer- it occupies Unlimited range (subject to available
(virtual) in computer memory.

b.

i. signed integer - stores signed or unsigned
e.g. -123, 342

ii. Booleans- True or False

1 or O

>>>a=3>10
>>>print(a)
False

c. Floating point Numbers- Represents double precision floating
point numbers (15 digit precision) e.g. -1234.56, 1234.56.

d. Complex Numbers- represents Complex Numbers in the form A + Bj

e.g.

>>>x=5+47
>>>type (x)

<class ‘complex’>

2. String data type- is an ordered data type that can hold any known
character like letters, numbers, special characters etc

e.g—. "abcd", "$@&%", |???| , "1234", "apyll

>>>s="hello”

3.

>>>type (s)

<class

‘str’ >

>>>type (“hello”)

<class

List data type- is an ordered group of comma-separated values of any

‘str’ >

datatype enclosed in square brackets []

e.g.

[1,23,36,48,5],

>>>a=[1,23,36,48,5]

[‘teena’,

101,

90.5],

['a',

>>>type (a)
<class ‘list’
>>>b=[“teena”
>>>type (b)
<class ‘list’

>

,"meena” ,”sheena’”]

>

Elements in a List can be individually accessed using its index (positive or negative)

Positive index value 0 1 2 3 4
List 1 23 36 48 5
Negative index value -5 -4 -3 -2 -1
Positive index value 0 1 2
List ‘teena’ 101 90.5
Negative index value -3 -2 -1
Positive index value 0 1 2 3 4
List \al \el \II \ol \ul
Negative index value -5 -4 -3 -2 -1
4. Tuple Data Type- is an ordered group of comma-separated values of any
datatype enclosed within parentheses ().
e.g. (1,23,36,48,5), ‘teena’, 101, 90.5, ('a', 'e', 'i', 'o', 'u')
>>>a=(1,23,36,48,5)
>>>type (a)
<class ‘tuple’>
>>>b=‘teena’, 101, 90.5
>>>type (b)
<class ‘tuple’>
Elements in a tuples can be individually accessed using its index (positive or negative)
Positive index value 0 1 2 3 4
tuple 1 23 36 48 5
Negative index value -5 -4 -3 -2 -1
Positive index value 0 1 2
tuple ‘teena’ 101 90.5
Negative index value -3 -2 -1
Positive index value 0 1 2 3 4
tuple \al \el \II \ol \ul
Negative index value -5 -4 -3 -2 -1

5. Dictionary Data type-is an unordered set of comma-separated key:value
pair enclosed within curly braces {}.

e.g. vowels ={'a':1,

here, 'a', 'b', 'c',

'b':2,

ldl,

lcl

13,

ld'

14,

'e':5}

1,2,3,4,5 are the values for these keys respectively.

'e' are the keys of dictionary vowels &

>>>a={1:'teena’ ,2:'heena’,3:’'sheena’}
>>>type (a)
<class ‘dict’>

Q What are mutable and immutable data types?

Ans

A mutable data type can change its state or contents
e.g.

list, dict, byte array

Immutable data type cannot change its state or contents

e.g.
int, float, complex, string, tuple, bytes , set

Q How we can find the address of any identifier or wvariable ?
Ans By using id() we can find the address or memory location of any variable.

>>>x=10
>>>id (x)

Q What is Type conversion? Explain Implicit and Explicit type Conversion.
Ans
The process of converting the value of one data type (integer, string, float,
etc.) to another data type is called type conversion.
Python has two types of type conversion.

* TImplicit Type Conversion

* Explicit Type Conversion

Implicit type conversion- Python automatically converts one data type to
another data type. This process doesn't need any user involvement.

>>>3=3

>>>pb=3.4

>>>d=a+b

>>>d

6.4

Explicit Type conversion- users convert the data type of an object to
required data type. We use the predefined functions like int() ,float() ,str()
etc.

>>>3=3

>>>c=3.4

>>>str(a) #str() function converts interger to string.

\3/

>>>str(c) #str() function converts float number to string

\3.47

>>>p=3.4

>>>d="' 3’

>>>int (b) # int() function converts floating number to integer

3

>>>int (d) # int() function converts string to integer

3

>>>d=input (“enter any number”) #input() takes value in the string form

4

>>>d

\4/

>>>d=int (input (Yenter any number”)) #int () function converts string to integer
4

>>>d

4

input function always enter string value in thon .

There is need of int float function can be used for data conversion.

Q What are Escape Sequences or Backslash Character Constants?
Ans

1. These are some non-printable or non-graphic characters which are mainly
for formatting(display purpose) and used only with print().
2. All escape sequences occupies one byte in computer memory

3. An escape sequence always starts with backslash followed by one or more
special characters.

4. Escape Sequences must be enclosed in single quotes or in double quotes.
e.g.

print(*\n’)

print (“\n”)

or
print(“\n hello \n world”)

few Escape sequences are:

Escape Sequence Description

W\ Backslash (\)

\' Single quote (')

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n New line or ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo
\xhh Character with hex value hh

Q What are comments in Python ?

Ans

e A comment is text that doesn't affect the outcome of a code.

e itisjusta piece of text to let someone know what you have done in a program or what is being
done in a block of code.

e It isreadable for programmer(a person who is writing the code) but ignored by python
interpreter.

TYPES of comments :
i. Single line comment: Which begins with # (hash)sign.

ii. Multi line comment (docstring): either write multiple line beginning with # sign or use triple
qguoted multiple line.

e..g.

a

this is to check the concept of

o

python multiline comment

Q Explain the concept of variable in Python.
Ans
* Variable is a name given to a memory location.
* Avariable can consider as a container which holds value.
* Pythonis a type infer language that means you don't need to specify the datatype of variable.
* Python automatically get variable datatype depending upon the value assigned to the variable.
Variable name follows the same rule as we are using for identifiers
Variable name= Identifier name
Q How we can declare a variable?
Ans
Syntax
Assigning single Value to Variable

variable_name= value

e.g.

name = ‘python' # String Data Type
num =2 #integer data type
roll_no=1 #integer data type

#ASSIGNING DIFFERENT VALUES TO MULTIPLE VARIABLES
variable_namel, variable_name2= value_of_variablel, value_of variable2
e.g.

>>>a,b=3,4

>>>3

3

>>>b

4

#ASSIGNING SAME VALUES TO MULTIPLE VARIABLES

variable_namel, variable_name2= value_of variablel, value_of variable2
e.g.

>>>3,b=0,0

or

>>>a=b=0

>>>a

>>>b

CONDITIONAL STATEMENTS

(DECISION MAKING)

The basic decision statements in computer is selection structure.

The decision is described to computer as conditional statement that can be answered True or

False

Python language provide the following conditional (decision making) statements.

¢ |f statement

It is used to control the flow of execution of the statements and also used to
test logically whether the condition is true or false.

Syntax:
if test_expression :
Statement

e.g.

n=int(input(“enter number”))
if(n<=10):
print(“condition is true”)

e |[f....else statement

The if...else statement is called alternative execution, in which there are two
possibilities and the condition determines which one gets executed

Syntax:
if test_expression :
Statement of if
else:
Statement of else

e.g.

n=int(input(“enter number”))
if(n<=10):

print(“condition is true”)
else:

print(“condition is false”)

e |f....elif.....else statement-

elif- is a keyword used in Python in replacement of else if to place another condition
in the program. This is called chained conditional.
Chained conditions allows than two possibilities and need more than two branches

Syntax:
if test_expression :
Statement of if
elif expression:
Statement of elif
else:
Statement of else

e.g.

n=int(input(“enter number”))
if(n<=5):
print(“condition is less than 5 ")
elif (n<=10 and (n>5):
print(“condition is between 10 and 5”)
else:
print(“condition is more than 10”)

¢ Nested if...else statement

We can write an entire if..else statement in another ifelse
statement called nesting, and the statement is called nested if.
In a nested if construct, you can have an if...elif...else construct inside
an if...elif...else construct
Syntax: e.g.
if test_expression : n=int(input(“enter number”))
Statement(s) if n<=15:
if test_expression : if n==10:
Statement(s) print(“ok”)
elif expression: else:
Statement(s) print(“use another option”)
else: else:
Statement(s) print(“more than 15”)
CONTROL STATEMENT

(LOOPING STATEMENT)

* Program statement are executed sequentially one after another. In some situations, a block of
code needs of times

* These are repetitive program codes, the computers have to perform to complete tasks.

* The following are the loop structures available in python

* while statement
» for...loop statement
* Nested loop statement

while loop

long as a given condition is true.

A while loop statement in python programming language repeatedly executes a target statement as

Syntax: e.g.
while expression: n=int(input(“enter no”))
statement(s) s=0
while(n>0):
s=s+n
n=n-1

print(“the sum is”,s)

while loop- infinite loop

while 1:
print(“*”)

OR

while 1: print(“*”)

while True:
print(“*”)

OR

while True: print(“*”)

else statement with while loops

Python supports have an else statement
associated with a loop statement

If the else statement is used with a while
loop, the else statement is executed
when the condition false.

e.g.
c=0
while ¢<3:
print(“inside loop”)
c=c+1
else:

print(“outside loop”)

For loop

The for loop is another repetitive control structure, and is used to execute a set of
instructions repeatedly, until the condition becomes false.

The for loop in python is used to iterate over a sequence(list,tuple,string) or other iterable
objects. Iterating over a sequence is called traversal.

Syntax:

forval in expression:
Body of the for loop

expression -> tuple | string|list| dictionary | range()

e.g.

foriin[1,2,3]: #list usage
print(i)

foriin(1,2,3): #tuple usage
print(i)

foriin “hello”: #string usage
print(i)

foriin {1:’a’,2:'b’}: #dictionary usage
print(i)

note:

range(start, end-1, step_value)

if only one value is specified then it takes only
end-1 and will take 0 as starting value

e.g.

foriinrange(5): #take values0,1,2,3,4
print(i)

foriinrange(1,5): #take values1,2,3,4
print(i)

foriinrange(1,5,2): #take values 1,3
print(i)

JUMP STATEMENTS

* Jump statements are used to transfer the program's control from one location to another.

* Means these are use d to alter the flow of a loop like - to skip a part of a loop or terminate a
loop.

There are three types of jump statements used in python.

1.break
2.continue
3.pass
break continue pass
It is used to terminate the loop It is used to skip all the * This statement does
remaining statements in the nothing.

loop and move controls backto |°
the top of the loop.

It can be used when a
statement is required

syntactically but the
program requires no action.

for val in "string":

for val in "string":

forval in "string":

if val =="i": if val =="i": if val =="i":
break continue pass
print(val) print(val) print(val)
print("The end") print("The end") print("The end")
Output: Output Output
s s s
t t t
r r r
The end n i
g n
The end g
The end

STRING DATA TYPE

Elements in a string can be individually accessed using its index (positive or negative)

Positive index wvalue 0 1 2 3 4
string H E L L o
Negative index value -5 -4 -3 -2 -1

STRING (store text type of data)

| LsT

| Tuple

similarities

1.Slicing- extract limited information or access a range of characters

2. Elements can be individually accessed using its index (positive or negative)

3. Iterating/Traversing - Each character can be accessed sequentially using for loop.

foriin “hello”: #string usage

foriin[1,2,3]:

foriin(1,2,3):

foriin range(len(s)):
print(i,s[i])

print(i,t[i])

foriin range(len(t)):

print(i) print(i) print(i)
s="hello” t=[1,2,3,4] t=(1,2,3,4)
foriins: foriint: foriint:

print(i) print(i) print(i)
s="hello” t=[1,2,3,4] t=[1,2,3,4]

foriin range(len(t)):
print(i,t[i])

4. Common functions

+ (concatenation (combine)),
* (replicate),

in (check for availability,
notin
count(element/string)---
index(value)

s="hello” t=[1,2,3] t=[1,2,3]

print(s+”world”) print(t+[4,5,6]) print(t+[4,5,6])

print(s*2) print(t*2) print(t*2)
len(),

s="hello”
print(s.count(‘l’))
print(len(s))

print(s.index(‘'))

t=[1,2,3,4,2]
print(t.count(2))
print(len(t))
print(s.index(2))

t=(1,2,3,4,2)
print(t.count(2))
print(len(t))
print(s.index(2))

if "ins:
print(“ok”)

if3int:
print(“ok”)

if 3int:
print(“ok”)

Differences

Strings are immutable(no
change of value in place)

list are
mutable(change of
value in place)

tuples are immutable(no change
of value in place)

declare empty string:

variable _name= quotation marks
e.g.:

str=""1

OR
str=

“ u

declare empty list:
variable _name=]
e.g.
t1=(]

str.capitalize()-capitalise first
letter of a string

str.title()-captialise first letter of
each word

str.upper()-converts all
characters into uppercase

str.lower()-converts all
characters into lowercase

str.count(‘char’)-count a
particular character or word

str.find(sub)-find the position of
searching word or character

str.replace(old string,new string)-
replace a string with another

str.index()-find the position
of a character

str.isalnum()-check
availability of bothalphabets
and numbers

str.isalpha()-check only
alphabets

str.islower()-check whether
string is lowercase or not

str.isnumeric()-check only
numbers

str.isspace()-check only
blanks

str.istitle()-check only first
character is in capital or not

str.isupper()-check the string
is in uppercase or not

append() -is used to
addanltemtoa
List.

e.g. list.append(3)

append() is also
used to create
nested list also
e.g.
list.append([3,4])

extend()- can be
used to add
multiple item at a
time in list
e.g.list.extend([3,4])

Delete Item From A
List-

del list[0:2] # delete
first

two
items
del list # delete
entire list

list.insert() insert an
Item at a defined
index

list.remove()
remove an ltem
from a list del

list.clear() empty all
the list

list.pop() Remove
an ltem at a defined
index

list.sort() Sort the
items of a list in

tuple(seq) Converts a list into
tuple.

min(tuple) Returns item from the
tuple with min value.can be
done via list.

max(tuple) Returns item from the
tuple with max value.can be done
via list.

sum()- sum of tuple elements can
be done via list

x =(1,4,6)

r=sum(list(x))

print(‘'sum of elements in tuple', r)
OUTPUT->11

sorted()- returns the sorted
elements list

x =(1,4,6)

r=sorted(x)

print(sorted elements in tuple', r)

ascending or

str.Istrip(char) —-remove spaces descending order
from left side of string
str.rstrip(char)-remove spaces list.reverse()
from right side of string Reverse the items
str.strip(char)-remove spaces of a list

from both left and right side
str.split()-divide the sentence
according to spaces or
particular characters

max(list) Return
item with maximum
value in the list.

endswith(s1)-check whether min(list) Return
string ends with particular item with min value
character in the list.

list(seq) Converts a
tuple, string, set,
dictionary into list.

DICTIONARY

* Dictionaries are mutable - (can modify its contents but Key must be unique and immutable)
* Unordered collection of elements (each item consist of a key and a value.)
* Inthe form of Key-Value Pairs which are enclosed in curly braces{}.
* Indictionary keys are unique but values can be duplicate.
* Keys are immutable but values are mutable.
* Indictionary, values can be retrieved only through keys
create an empty dictionary which are as follows
« A={} # A is an empty dictionary
* A=dict() # dict() method will create an empty dictionary.
delete the elements of dictionary:
* 1.By using del statement :
* 2. By using pop () function #here pop() function takes keys instead of position
d={1a’,2:'b’,3:'c’}
get()-return the value of the required Key. e.g. d.get(1)
clear()-removes all items from the dictionary. e.g. d.clear()
items()-all the key value pair of dictionary in the form of list of tuples. d.items()
keys()-all the keys of dictionary in the form of List. e.g. d.keys()
values()-all the values of dictionary in the form of List. e.g. d.values()

update()-merge the key value air of two dictionary into one. e.g. d.update({4:’e’,5:'f'})

setdefault() method returns the value of the item with the specified key. If the key does not exist, insert
the key, with the specified value.

e.g.
d.setdefault(6,'g')

max() — returns key having maximum value. e.g. max(d)
sorted- sort by key or value

e.g.

sorted(d.items(),reverse=True)

sorted(d)

Function

A function is a subprogram that acts on data and often returns a value
Advantages

1. Program development made easy and fast : Work can be divided among project members thus
implementation can be completed fast.

2. Program testing becomes easy

3. Code sharing becomes possible

4.Code re-usability increases

5. Increases program readability
Types of Functions

* Built—in functions (function using Libraries)- Pre-defined functions like
int(),type(),float(),str(),print(),input(),ord(),hex(),oct() , len() etc

* Functions defined in the modules(function using Libraries)- functions that are in particular
modules like sin(),floor(),ceil(),dump(),load() etc

* User defined functions- defined by the programmer
PARTS OF USER DEFINED FUNCTIONS
* Function definition
* Arguments(those variables which are use in function calling)
* Parameters(those variables which are use in function definition)
* Function Calling-
* void functions- those functions which are not returning values to the calling function

* Non void functions- those functions which are returning values to the calling function.

Value return can be literal, variable , expression
Q What are Arguments?

Ans Arguments- passed values in function call.

Passed values can be of three types
1. Literals
2. Variables

3. Expressions

e.g.

def fun(a,b):

c=a+b

print(c)
x=2
y=4
fun(x,y) #variables
fun(5,6) #literals
fun(x+3,y+6) #expressions

Q What are Parameters?

Ans Parametes- received values in function definition.

It should be of variable types.

e.g.
def fun(a,b): #parameters
c=a+b
print(c)

Q What are actual and formal arguments /parameters?

Ans

A formal parameter, i.e. a parameter, is in the
function definition.

An actual parameter, i.e. an argument, isin a
function call.

def sum(x,y):
Z=x+y
return z #treturn the result

#x, y are formal arguments

x,y=4,5
r=sum(x,y) #x, y are actual arguments
print(r)

Q What is the use of return statement?

Ans It is used to return either a single value or multiple values from a function.

Q Can Python return Multiple values and in what forms?

Ans Python can return Multiple Values from Functions

It can be in the form of tuples :

1.
Received values as tuple

e.g.
def fun(a,b):

return a+b,a-b
x=2
y=4
z=fun(x,y)
print(z)

e.g.

Unpack received values as tuple

def fun(a,b):

x=2

y=4
d,z=fun(x,y)
print(d,z)

return a+b,a-b

Q Explain different types of arguments in detail

Ans
1. 2. Default Arguments- if right parameter | 3.
Positional have default value then left parameters Keyword Arguments(Named

parameters(Required
Arguments) - these
arguments must be
provided for all

can also have default value. this
argument can be skipped at the time of
function calling

Arguments)- We can write
arguments in any order but we
must give values according to
their name

z=5
fun(x,y,z) #here it will be take parameter c

parameters

e.g. e.g. e.g.

def fun(a,b): def fun(a,b,c=3): def fun(a,b,c):
c=a+b d=a+b+c print(a,b,c)
print(c) print(d)

x=10 x=10 fun(b=3,c=4,a=2)

y=3 y=3

fun(x,y) fun(x,y) #here c parameter value is 3

value as 5

Q What do you mean by scope of variables?

Ans Scope means —to which extent a code or data would be known or accessed.

There are two types of variables with the view of scope.

1. Global variable/Scope- Name declared in
main program . It is usable inside the
whole program.

1. Local variable/Scope- Name declared in function
body. It is usable within the function.

e.g.

def fun(a,b):
s=a+tb
print(s)

X=int(input(“enter nol”))
Y=int(input(“enter no2”))
fun(X,Y)

#here X and Y are global variable

e.g.
def fun():
A=10
B=20
return(A+B)

C=fun()
print(C)
print(A)
#there A and B are local variables and C is global variable

Naming Resolution- LEGB-(LOCAL, ENCLOSED, GLOBAL and BUILT-IN)

1. Variable in global scope not in local
scope

e.g
def funi(x,y):

1. Variable neitherinin local scope norin
global scope
e.g.
def fun():

S=X+Y

returns
num1=100
num2=200

print(sm)

print(num1)

sm=funl(numl,num?2)

fun()
#
Output:

print(“hello”,n)

Name error: name ‘n’ is not defined

global scope

e.g.

def fun():
a=10
print(a)

a=5

print(a)

fun()

print(a)

output

5

10

5

3. Variable name in local scope as well as in

e.g.

def fun():
global a
a=10
print(a)

a=5

print(a)

fun()

print(a)

output

5

10

10

4. Using global variable inside local scope
(this case is discouraged in programming)

Q How do we create modules in Python?

Ans

Modules in Python are simply Python files with a .py extension. The name of the module will be the

name of the file.

Q What are the different ways of importing modules in Python?

Ans

1. Importing entire module

2. Importing selected function/object from a module

3. Importing all function/objects of a module

importing entire module

importing selected function/object from a
module

importing all function/objects
of a module

syntax syntax syntax

import module_name from module_name import function_name from module_name import *
e.g. e.g. e.g.

import math from math import sqrt from math import *

print(math.sqrt(4))

print(sqrt(4))

from math import sqrt,pow
print(sqrt(4))
print(pow(3,2))

print(sqrt(4))
print(pow(3,2))

Q What
Ans

e e

is the use of _init.py file?

Each package in Python MUST contain a special file called __init__.py.

This file can be empty.

it specifies that the directory it contains is a Python package.
it can be imported the same way a module can be imported.

random module-

1. random() e.g.
a) it returns a random number in range(0.0 - 1.0). | import random
b) In this lower range limit is inclusive. print(random.random())
c) Returns floating point number.
2. randint() import random
a) it returns a random number in given range. print(random.randint(4,20))
b) both range limit are inclusive.
c) returns integer number.
3. randrange() import random
a) itreturns a random number in given range. print(random.randrange(4,20))
b) ending range not including. print(random.randrange(4,20,3))
c) returnsinteger number

File Handling

Q what

is the usage of file?

Ans File is created for permanent storage of data or that stores data in an application.

Q How many types of files supported by Python?

Ans 3 (text file, binary file and CSV file)

Q Why is it necessary to close a file?

Ans

hw

® N oW

Q Write

Ans

Closing a file releases valuable system resources.

if our program is large and we are reading or writing multiple files that can take significant
amount of resource on the system. If we keep opening new files carelessly, we could run out

of resources.
close() breaks the link of file object

After using this method, an opened file will be closed and a closed file cannot be read or

written any more.
Closing file is important

In case we forgot to close the file , Files are automatically closed at the end of the program,

it is a good practice to close file explicitly.
This can boost performance.

the different ways to open a file

‘openO

with statement

file_object/file_handler = open(<file_name>,
<access_mode>).

with statement- in this mode, no need to call
close() function

syntax:
with open(<file_name>, <access_mode>) as
file_object/file_handler

with file,like read,write etc

file_name = name of the file ,enclosed in double quotes.

access_mode= It is also called file mode. Determines the what kind of operations can be performed

If no mode is specified then the file will open in read mode.

e.g
f=open(“abc.txt”,’r’)
f.write(“hello”)
f.close()

e.g.
with open(“abc.txt”) as f:
f.write(“hello”)

Q purpose of read(n) method?

This method reads a string of size (here n) from the specified file and returns it. If size parameter is not
given or a negative value is specified as size, it reads and returns up to the end of the file. At the end of

the file, it returns an empty string

Q Name two important functions of CSV module which are used for reading and writing.

csv.reader() returns a reader object which iterates over lines of a CSV file

csv.writer() returns a writer object that converts the user's data into a delimited string. This string can
later be used to write into CSV files using the writerow() or the writerows() function.

MySQL

Data types of SQL- Following are the most common data types of SQL.

1) NUMBER / INTEGER

2) CHAR
3) VARCHAR
4) DATE
5) DECIMAL
DDL DML
Data definition language Data manipulation language
Create Insert
Drop Update
Alter Delete
Select

Creating a Database-To create a database in
RDBMS, create command is used.
Syntax,

INSERT Statement To insert a new tuple(row or
record) into a table is to use the insert statement

create database database-name;
Example
create database Test;

CREATE TABLE Command: Create table
command is used to create a table in SQL.
Syntax :

CREATE TABLE tablename
(column_name data_type(size),
column_name2 data_type(size)....

);

e.g. create table student (rollno integer(2),
name char(20), dob date);

Alter command is used for alteration of table
structures. Various uses of alter command,
such as,

e toadda column to existing table

e torename any existing column

e to change datatype of any column or
to modify its size.

e alteris also used to drop a column.

Example:
ALTER command- Add Column to existing
Table
Using alter command we can add a column to
an existing table.
Syntax,
alter table table-name
add(column-name datatype);
e.g.
alter table Student add(address
char);
ALTER command-To Modify an existing
Column
alter command is used to modify data type of
an existing column .
Syntax:-
alter table table-name modify(column-name
datatype);
e.g.
alter table Student modify(address
varchar(30));

ALTER command- To Rename a column
Using alter command you can rename an
existing column.

Syntax:-

0] To insert records into specific columns
Syntax:
insert into table_name(column_namel,
column_name?2...)values
(valuel,value2....);

e.g. INSERT INTO student
(rollno,name)VALUES(101,'Rohan’);

(if) insert records in all the columns
insert into table_name
values(valuel,value2......);

e.g.INSERT INTO student
(VALUES(101,'Rohan','XI',400,'Jammu’);

Update command —it is used to update a row of a
table. syntax,

UPDATE table-name set column-name = value where
condition;

e.g.

UPDATE Student set s_name="Abhi',age=17 where
s_id=103;

Delete command

It is used to delete data(record) from a table.It can
also be used with condition to delete a particular row.
(i) syntax:- to Delete all Records from a Table

DELETE from table-name;

Example
DELETE from Student;

(ii) syntax: to Delete a particular Record from a
Table

DELETE from Student where s_id=103;

SELECT command
Select query is used to retrieve data from a tables. It
is the most used SQL query. We can retrieve
complete tables, or partial by mentioning conditions
using WHERE clause.
Syntax :

(i) DISPLAY SPECIFIC COLUMNS
SELECT column-namel, column-name2, column-
name3, column-name from table-name;

Example
SELECT s_id, s_name, age from Student;

(i) to Select all Records from Table- A
special character asterisk * is used to

alter table table-name change old-column-
name new_ column-name;

e.g.

alter table Student change address Location;

The above command will
rename address column to Location.

ALTER command -To Drop a Column
alter command is also used to drop columns
also. Syntax:-

alter table table-name drop(column-name)

e.g.
alter table Student drop column (address);

DDL - Drop command

This command completely removes a table
from database. This will also destroy the table
structure. Syntax,

drop table table-name

Example

drop table Student;

To drop a database,

drop database Test;

address all the data(belonging to all
columns) in a query. SELECT statement
uses * character to retrieve all records
from a table.

Example: SELECT * from student;

CONSTRAINTS-

Constraints: Constraints are the conditions that
can be enforced on the attributes of a relation. The
constraints come in play whenever we try to
insert, delete or update a record in a relation.
They are used to ensure integrity of a relation,
hence named as integrity constraints.

1. NOT NULL

2. UNIQUE

3. PRIMARY KEY
4. FOREIGN KEY
5. CHECK

6. DEFAULT

Example:

Create table Fee

(RolINo integer(2) Foreign key (Rollno)
references Student (Rollno),

Name char(20) Not null,

Amount integer(4),

i. Not Null constraint : It ensures that the column
cannot contain a NULL value.

ii. Unique constraint : A candidate key is a
combination of one or more columns, the value of
which uniquely identifies each row of a table.

iii. Primary Key : It ensures two things :

(i) Unique identification of each row in
the table.

(ii) No column that is part of the Primary
Key constraint can contain a NULL value.

iv. Foreign Key : The foreign key designates a
column or combination of columns as a foreign
key and establishes its relationship with a primary
key in different table.

Fee_Date date);

Example:

create table Employee

(EmpNo integer(4) Primary Key,
Name char(20) Not Null,

Salary integer(6,2) check (salary > 0),
DeptNo integer(3)

’

example:

create table Employee

(EmpNo integer(4) Primary Key,
Name char(20) Not Null,

Salary integer(6,2) check (salary > 0),
DeptNo integer(3) default 0

v. Check Constraint : Sometimes we may
require that values in some of the columns of our
table are to be within a certain range or they must
satisfy certain conditions.

vi. Default Constraint : The DEFAULT
constraint is used to set a default value for a
column. The default value will be added to all
new records, if no other value is specified.

WHERE clause

Where clause is used to specify condition while retriving data from table. Where clause is used mostly
with Select, Update and Delete query. If condition specified by where clause is true then only the result

from table is returned.

Syntax

SELECT column-namel, column-name2, column-name3, column-nameN

from table-name
WHERE [condition];

Logical operator- AND,OR,NOT

AND operator- AND to show true value if all
the conditions are true

EXAMPLE

TO return records where salary is less than 10000
and age greater than 25.

SELECT * from Emp WHERE salary < 10000
AND age > 25;

OR operator-

In this, atleast one condition from the conditions
specified must be satisfied by any record to be in
the result.

Example

To return records where either salary is greater
than 10000 or age greater than 25.

SELECT * from Emp WHERE salary > 10000
OR age > 25;

Like clause- pattern matches
Wildcard operators - used in like clause.
(i) Percentsign % : represents zero, one or
more than one character.
(ii) Underscore sign _: represents only one
character.
Example of LIKE clause
To display all records where s_name starts with
character 'A'.
SELECT * from Student where s_name like 'A%,
Example
To display all records from Student table
where s_name contain 'd' as second character.
SELECT * from Student where s_name like
" d%";

Relational Operator (comparison)
>, <, >=, <=, <> (not equal to) =(equal to)

IN- used to show the records from a LIST

Display all records of those employees
whose belong to mumbai,delhi,jaipur only

Select * from emp where city in
(‘mumbai’,’delhi’,’jaipur’);

BETWEEN- show records within range

Display records whose salary between 2000
to 3000

select * from emp where sal between 2000
and 3000;

Aggregrate Functions-These functions
return a single value after calculating from a
group of values.

frequently used Aggregrate functions.
Avg(), Sum(), max(), min(),
count(column_name),count(distinct)
count(column name)- Count returns the number
of rows present in the table either based on
some condition or without condition.
COUNT(distinct)

SELECT COUNT((distinct salary) from emp;

Distinct keyword- it is used

with Select statement to retrieve unique values
from the table. Distinct removes all the duplicate
records while retrieving from database.

Syntax :

SELECT distinct column-name from table-name;
Example

To display only the unique salary

from Emp table

select distinct salary from Emp;

HAVING Clause

It is used to give more precise condition for a statement. It is used to mention condition in Group

based SQL functions, just like WHERE clause.
Syntax:

select column_name, function(column_name)
FROM table_name

WHERE column_name condition

GROUP BY column_name

HAVING function(column_name) condition;

Consider the following Sale table.

previous_balance

customer

Oid order_name
To find the customer whose previous_balance sum is more than 3000.
SELECT *
from sale

group by customer
having sum(previous_balance) > 3000;

Order By Clause- arrange or sort data
To sort data in descending order DESC keyword

Group By Clause- it is used to group the
results of a SELECT query based on one or more
columns

Syntax :

SELECT column-list|*
from table-name

order by asc / desc;

To display all records in ascending order of
the salary.

SELECT * from Emp order by salary;

To display all records in descending order of
the salary.

SELECT * from Emp order by salary DESC;

SELECT column_name,
aggregate_function(column_name)
FROM table_name

WHERE condition

GROUP BY column_name;

To find name and age of employees grouped by
their salaries

Example

SELECT name, age

from Emp

group by salary;

Group by in a Statement with WHERE clause
select name, max(salary)

from Emp

where age > 25

group by salary;

MySQL Connectivity

import mysqgl.connector as m
Open database connection

db = m.connect(host="localhost",user="root",passwd="1234")

prepare a cursor object using cursor() method
cursor = db.cursor()

execute SQL query using execute() method.
cursor.execute("show databases")

Fetch a first three rows using fetchmany() method.
data = cursor.fetchmany(3)
foriin data:

print (i)

disconnect from server
db.close()

write any sqgl related command in execute function

To fetch some useful information from the database, can use either

fetchone() method to fetch single record

fetchall() method to fetch multiple values from a database table.

fetchmany()- to fetch limited no of records

rowcount - it returns the number of rows using execute() method

Once a database connection is established, we are ready to create tables or records
into the database tables using execute method of the created cursor.

Click on the below link to know:
DIFFERENCE BETWEEN VARIOUS TOPICS/CONCEPTS

https://www.cs2study.com/wp-content/uploads/2021/03/Differences-between-various-topics.pdf

