It allows us to measure the time and space complexity of code.

ldea of Algorithmic efficiency

T e

Program to add two numbers

A=5
B=7
C=A+B
print(c)

It is important to measure efficiency of algorithm before applying it on large scale.

A=[1,2,3.4]

S=0

foriin X:
S=S+i

print(s)

Factors of Performance of Algorithm

* Internal Factors- time required * External factors- size of input to
to run and memory required to the algorithm , speed of
run computer.

* External factors are controllable.

* We will determine efficiency of algorithm in terms of computational complexity

* Computational Complexity- computation + complexity
involves the problems to be solve and algorithms to solve them.

. * involves study of factors to determine how much resource is necessary for this
algorithm to run efficiency.

. - time to run algorithm, memory needed (time complexity is more important

Factors of Performance of Algorithm

 When analyzing the time complexity of an algorithm we may have three cases

* Worst case — The case when the program consumes maximum resources
(time and memory) to process the given data.

* Best case — The case when the program consumes minimum resources (time
and memory) to process the given data.

e Average case — The case when the program consumes average resources (time
and memory) to process the given data.

* Program efficiency is inversely proportional to clock time”, it means that a more efficient
program will take less time than a less efficient program to process the given data. Or the
more efficient a program is, the less time it will take to process the given data.

Big O Notation

It allows us to measure the time and space complexity of code.

Big O Notation

1. Rule (LOOPS)
for iin range (n):
m=m-+2
All the steps in loop take constant time c and loop is executed n times

Total time =c*n=cn ->0(n)

Big O Notation

2 Rule (Nested LOOPS)

for iin range (n):
forjin range(n):
k=k+1

All the steps in blue will take . time and outer loop executed I times

Total time = cn*n = cn? -> 0O(n?)

Big O Notation

3 Rule (Consective Statements)

x=x+1 H#constant time =a

for I in range(n): #constant time=cn
m=m+2

for iin range (n): #constant time=bn?

for jin range(n):
k=k+1

Total time = a+cn+bn? = O(n?) (considering only the dominant term)

Big O Notation

4 Rule (if else statements)

x=x+1 H#constant time =a

If len(x)!=len(y): #constant time=b
return false #constant time=e

for iinrange (n): #constant time=(c+d)*n
if(x[i] !=y[i] #constant time=c

return false #constant time=d

Total time = a+b+e+(c+d)*n= O(n)

Big O Notation

4 Rule (if else statements)

x=x+1 H#constant time =a

If len(x)!=len(y): #constant time=b
return false

for iinrange (n): #constant time=(c+d)*n
if(x[i] !=y[i] #constant time=c

return false #constant time=d

Total time = a+b+(c+d)*n= O(n)

Worst case complexity /run time complexity /run time efficiency

If the efficiency of the algorithm doit can be expressed as O(n) = n?

D=1
while d<=n:
e=1
while(e<n):
doit(....
e=e+]
d=d+1

n*(n-1)*n? = O(n%)

Worst case complexity /run time complexity /run time efficiency

Find Worst case complexity?
foriinrange(n):
a=i+ (i+1)
print(a)
foriin range(m):
b=i + (i+1)
print(b)
n*(a+b)+m*(c+d) = O(n+m)

