
Big O Notation
It allows us to measure the time and space complexity of code.

Idea of Algorithmic efficiency

•An algorithm is a method for accomplishing
a specific task.

Program to add two numbers

• A=5

• B=7

• C=A+B

• print(c)

• It is important to measure efficiency of algorithm before applying it on large scale.

A=[1,2,3.4]

S=0

for i in X:

S=S+i

print(s)

Factors of Performance of Algorithm

• Internal Factors- time required
to run and memory required to
run

• External factors- size of input to
the algorithm , speed of
computer.

• External factors are controllable.

• We will determine efficiency of algorithm in terms of computational complexity

• Computational Complexity- computation + complexity

• Computation involves the problems to be solve and algorithms to solve them.

• Complexity involves study of factors to determine how much resource is necessary for this
algorithm to run efficiency.

• Resource- time to run algorithm, memory needed (time complexity is more important

Factors of Performance of Algorithm
• When analyzing the time complexity of an algorithm we may have three cases

• Worst case – The case when the program consumes maximum resources
(time and memory) to process the given data.

• Best case – The case when the program consumes minimum resources (time
and memory) to process the given data.

• Average case – The case when the program consumes average resources (time
and memory) to process the given data.

• Program efficiency is inversely proportional to clock time”, it means that a more efficient
program will take less time than a less efficient program to process the given data. Or the
more efficient a program is, the less time it will take to process the given data.

Big O Notation
It allows us to measure the time and space complexity of code.

Big O Notation

1. Rule (LOOPS)

for i in range (n):

m=m+2

All the steps in loop take constant time c and loop is executed n times

Total time = c*n = cn -> O(n)

Big O Notation

2 Rule (Nested LOOPS)

for i in range (n):

for j in range(n):

k=k+1

All the steps in blue will take cn time and outer loop executed n times

Total time = cn*n = cn2 -> O(n2)

Big O Notation

3 Rule (Consective Statements)

x=x+1 #constant time =a

for I in range(n): #constant time=cn

m=m+2

for i in range (n): #constant time=bn2

for j in range(n):

k=k+1

Total time = a+cn+bn2 = O(n2) (considering only the dominant term)

Big O Notation

4 Rule (if else statements)

x=x+1 #constant time =a

If len(x)!=len(y): #constant time=b

return false #constant time=e

for i in range (n): #constant time=(c+d)*n

if(x[i] !=y[i] #constant time=c

return false #constant time=d

Total time = a+b+e+(c+d)*n= O(n)

Big O Notation

4 Rule (if else statements)

x=x+1 #constant time =a

If len(x)!=len(y): #constant time=b

return false

for i in range (n): #constant time=(c+d)*n

if(x[i] !=y[i] #constant time=c

return false #constant time=d

Total time = a+b+(c+d)*n= O(n)

Worst case complexity /run time complexity /run time efficiency

If the efficiency of the algorithm doit can be expressed as O(n) = n2

D=1

while d<=n:

e=1

while(e<n):

doit(….

e=e+1

d=d+1

n*(n-1)*n2 = O(n4)

Worst case complexity /run time complexity /run time efficiency

Find Worst case complexity?

for i in range(n):

a=i + (i+1)

print(a)

for i in range(m):

b=i + (i+1)

print(b)

n*(a+b)+m*(c+d) = O(n+m)

